2MASX J10222849+5006200

2MASX J10222849+5006200
2MASX J10222849+5006200 captured by SDSS
Observation data (J2000.0 epoch)
ConstellationUrsa Major
Right ascension10h 22m 28.44s
Declination+50d 06m 19.83s
Redshift0.158413
Heliocentric radial velocity47,491 km/s
Distance2.455 Gly (752.7 Mpc)
Group or clusterAbell 980
Apparent magnitude (V)0.031
Apparent magnitude (B)0.041
Surface brightness17.5
Characteristics
TypeBrCLG
Apparent size (V)0.44' x 0.28'
Notable featuresOldest fossil radio galaxy containing double radio lobes
Other designations
OGC 286, PGC 2362940, NVSS J102228+500620, SDSS J102228.44+500619.8, CXOGSG J102228.4+500619, RX J1022.4+5006:[ZEH2003] 04

2MASX J10222849+5006200 also known as PGC 2362940, is a massive Type-cD elliptical galaxy located in the constellation of Ursa Major. With the redshift of 0.15, the galaxy is located 2.4 billion light-years away from Earth.[1] It is the brightest cluster galaxy (BCG) inside the galaxy cluster, Abell 980.

Characteristics

2MASX J10222849+5006200 is an optically luminous galaxy with an r-band luminosity of L r > 8L*[2] with a powerful radio source.[3] It is a low-excitation radio galaxy with a 1.4 GHz luminosity range between 2 × 1023 and 3 × 1025 W Hz−1[4] featuring a hybrid of both Fanaroff-Riley (FR) I and FR II sources.[5] The galaxy is a red elliptical galaxy, with a radio-loud active galactic nucleus with an old stellar population dominating at high stellar mass of M > 1010.5-10.8~M⊙,[6] following an fLE_RL ∝ M^{2.5_* power law of 3.[7] It reveals a powerful, unique core component matching up with its [O III] 5007 Å line emission, suggesting the galaxy's active galactic nucleus is steadily charged as it reaches the bubble-rise time-scales.[8]

Like all giant elliptical galaxies inhabiting the center of such clusters, 2MASX J10222849+5006200 is found to have a central velocity dispersions in the range of α ~ 300–400 km s−1,[9] which is found to have a tight relation between the BCG itself and its parent cluster velocity dispersion.[10][11] The galaxy also has a light profile, over a large range in radius as described by a de Vaucouleurs surface brightness law, μ(r) α r1/4.[12] In addition, 2MASX J10222849+5006200 has a excessive light envelope fitted to its inner regions[13] reaching up to several hundreds of kiloparsecs.[14]

It is suggested 2MASX J10222849+5006200 was formed from smaller spiral galaxies or ellipticals that were agglutinated.[15][16] As these galaxies collide with each other, dynamic friction alongside tidal forces, reallocates kinetic energy into random form of energy, causing these galaxies to form a uniformed, triaxial system similar an elliptical galaxy like 2MASX J10222849+5006200.[17][18] Eventually the galaxy settles to become a BCG inside the cluster, as it undergoes through galactic cannibalism. More satellite galaxies are coalesced, causing the luminosity of 2MASX J10222849+5006200 to increase.[19] As time goes on, the mass of the central galaxy becomes bigger while satellite galaxies becomes smaller.[20]

Radio lobes

Indian researchers led by Surajit Paul from the Savitribai Phule Pune University in Pune, found 2MASX J10222849+5006200 has prehistoric radio lobes. Formed 260 million years ago, this oldest radio lobes makes it the oldest fossil radio galaxy found. They also found a secondary pair of younger radio lobes whom they associated it with the same galaxy. The combined older and younger radio lobes makes 2MASX J10222849+5006200 a rare example of a galaxy with twin radio lobes, meaning its supermassive black hole is responsible for episodically eruptions.[21]

When observed by LoFAR Two meter Sky Survey at 144 MHz, together with Giant Meterwave radio Telescope (GMRT) and also the Very Large Array (VLA) at elevated frequencies, the double radio lobes found by researchers in 2MASX J10222849+5006200 were produced through two intervals of radio jet activity. Leftover lobes from prior activity, has spread out thus creating ultra-steep spectrum (USS) sources, rising vivaciously when constricted by hot intracluster medium (ICM).[22]

The USS sources located at point A and point B are scattered with decent luminosities of ∼3.7 × 1024 W Hz−1 and ∼1.4 × 1024 W Hz−1 at 325 MHz respectively, hinting the inactively of relic lobes in radio galaxies like 2MASX J10222849+5006200.[23][24] In unison, the host galaxy has moved into the central region of the cluster with velocity drift of ∼400 km s−1. This is unexceptional for BCGs,[10] when entering a new active phase demonstrated by a concurrent younger binary radio source.[22]

From the new observational results and arguments presented by researchers, the old and young double radio sources in 2MASX J10222849+5006200 mutually represent a `double-double' radio galaxy with two lobe-pairs losing their collinearity due to the lateral placement of their parent galaxy, hence making it a plausible case of a `Detached-Double-Double Radio Galaxy' (dDDRG) system.[22]

In addition, the diffuse source is found to have radio mini-halo[25] of size ∼110 kpc around the BCG. This source contains a ellipsoidal stellar halo measuring ∼80 kpc. The flux density is estimated to be 11.5 ± 1.3 mJy at 325 MHz, being in tune with a luminosity of 7.9 ± 0.9 × 1023 WHz−1 and a radio emissivity of 1.1 ± 0.2 × 10−40 ergs−1 cm−3 Hz−1 that related to giant radio haloes contained in dying radio galaxies.[26] Looking at the cold fronts and ancient (∼260 Myr), USS sources inside the cluster, it is a rare system.[27]

Abell 980

Abell 980 is considered a rich cluster.[28] Discovered in 1958 by American astronomer George O. Abell, it was one of the 2,712 galaxy clusters inside the Abell catalogue. These clusters were recorded by Abell via gathering data from National Geographic Society – Palomar Observatory Sky Survey.[29]

Abell 980 is classified as a fossil galaxy group. The cluster has LX distribution within the 0.1-2.4 keV band, processed by data from the ROSAT All Sky Survey[30] and located with a redshift of 0.1582.[31] It has a high Sunyaev-Zel'dovich of M SZ 500 = 4.73 +0.29 -0.32 x 1014 M⊙[32] and high X-ray luminosity of LX = 7.1 × 1044 erg s−1), with an average intracluster medium temperature of 7.1 keV.[33] When figured by Westerbork Northern Sky Survey data at resolution of 54″ at 330 MHz, the luminosity value in Abell 980 is P330 MHz = 5.6 ± 1.3 × 1024 W Hz−1 at 330 MHz, with a slight faint emission that underlies an inactive radio peak.[34]

Furthermore, the intracluster medium measured to be T ∼ 4.2 keV in Abell 980, is said to have a tranquil appearance, with a ∼100 kpc core core that is bordered by a large (∼500 kpc) hot vaporus halo (T ∼ 6.8 keV) ending in two brightness points.[27] As well, Abell 980 contains a dark matter mass of 10−25-10−24 cm3 s−1 within the range of 10-100 GeV or a framework of <σv> ∼ 10−26 cm3 s−1 for better approach.[35] Researchers who estimated the halo mass of Abell 980, has an average mass of (1.99 ± 0.11)M 200, a new observational cosmological test found agreeable with simulations.[36]

References

  1. ^ "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-06-21.
  2. ^ Ogle, Patrick M.; Lanz, Lauranne; Appleton, Philip N.; Helou, George; Mazzarella, Joseph (2019-07-01). "A Catalog of the Most Optically Luminous Galaxies at z < 0.3: Super Spirals, Super Lenticulars, Super Post-mergers, and Giant Ellipticals". The Astrophysical Journal Supplement Series. 243 (1): 14. arXiv:1904.02806. Bibcode:2019ApJS..243...14O. doi:10.3847/1538-4365/ab21c3. ISSN 0067-0049.
  3. ^ Yuan, Z. S.; Han, J. L.; Wen, Z. L. (2016-08-01). "Radio luminosity function of brightest cluster galaxies". Monthly Notices of the Royal Astronomical Society. 460 (4): 3669–3678. arXiv:1605.03387. Bibcode:2016MNRAS.460.3669Y. doi:10.1093/mnras/stw1125. ISSN 0035-8711.
  4. ^ Lin, Yen-Ting; Huang, Hung-Jin; Chen, Yen-Chi (2018-05-01). "An Analysis Framework for Understanding the Origin of Nuclear Activity in Low-power Radio Galaxies". The Astronomical Journal. 155 (5): 188. arXiv:1803.02482. Bibcode:2018AJ....155..188L. doi:10.3847/1538-3881/aab5b4. ISSN 0004-6256.
  5. ^ Hu, Jingfu (2018-12-13). "The Differences between High Excitation Radio Galaxies and Low Excitation Radio Galaxies". IOP Conference Series: Materials Science and Engineering. 452: 042052. doi:10.1088/1757-899x/452/4/042052. ISSN 1757-899X.
  6. ^ Tasse, C.; Best, P. N.; Röttgering, H.; Le Borgne, D. (2008-11-01). "Radio-loud AGN in the XMM-LSS field. II. A dichotomy in environment and accretion mode?". Astronomy and Astrophysics. 490 (3): 893–904. Bibcode:2008A&A...490..893T. doi:10.1051/0004-6361:20079299. ISSN 0004-6361.
  7. ^ Janssen, R. M. J.; Röttgering, H. J. A.; Best, P. N.; Brinchmann, J. (2012-05-01). "The triggering probability of radio-loud AGN. A comparison of high and low excitation radio galaxies in hosts of different colors". Astronomy and Astrophysics. 541: A62. arXiv:1206.0578. Bibcode:2012A&A...541A..62J. doi:10.1051/0004-6361/201219052. ISSN 0004-6361.
  8. ^ Hogan, M. T.; Edge, A. C.; Hlavacek-Larrondo, J.; Grainge, K. J. B.; Hamer, S. L.; Mahony, E. K.; Russell, H. R.; Fabian, A. C.; McNamara, B. R.; Wilman, R. J. (2015-10-01). "A comprehensive study of the radio properties of brightest cluster galaxies". Monthly Notices of the Royal Astronomical Society. 453 (2): 1201–1222. arXiv:1507.03019. Bibcode:2015MNRAS.453.1201H. doi:10.1093/mnras/stv1517. ISSN 0035-8711.
  9. ^ Carter, D.; Inglis, I.; Ellis, R. S.; Efstathiou, G.; Godwin, J. G. (1985-01-01). "Kinematics and dynamics of the haloes of supergiant galaxies". Monthly Notices of the Royal Astronomical Society. 212 (2): 471–488. Bibcode:1985MNRAS.212..471C. doi:10.1093/mnras/212.2.471. ISSN 0035-8711.
  10. ^ a b Sohn, Jubee; Geller, Margaret J.; Diaferio, Antonaldo; Rines, Kenneth J. (2020-03-01). "Velocity Dispersions of Brightest Cluster Galaxies and Their Host Clusters". The Astrophysical Journal. 891 (2): 129. arXiv:1910.11192. Bibcode:2020ApJ...891..129S. doi:10.3847/1538-4357/ab6e6a. ISSN 0004-637X.
  11. ^ Fisher, David; Illingworth, Garth; Franx, Marijn (1995-01-01). "Kinematics of 13 Brightest Cluster Galaxies". The Astrophysical Journal. 438: 539. Bibcode:1995ApJ...438..539F. doi:10.1086/175100. ISSN 0004-637X.
  12. ^ de Vaucouleurs, Gerard (1948-01-01). "Recherches sur les Nebuleuses Extragalactiques". Annales d'Astrophysique. 11: 247. Bibcode:1948AnAp...11..247D. ISSN 0365-0499.
  13. ^ Kormendy, John; Djorgovski, S. (1989-01-01). "Surface photometry and the structure of elliptical galaxies". Annual Review of Astronomy and Astrophysics. 27: 235–277. Bibcode:1989ARA&A..27..235K. doi:10.1146/annurev.aa.27.090189.001315. ISSN 0066-4146.
  14. ^ Huang, Song; Leauthaud, Alexie; Greene, Jenny E.; Bundy, Kevin; Lin, Yen-Ting; Tanaka, Masayuki; Miyazaki, Satoshi; Komiyama, Yutaka (2018-04-01). "Individual stellar haloes of massive galaxies measured to 100 kpc at 0.3 < z < 0.5 using Hyper Suprime-Cam". Monthly Notices of the Royal Astronomical Society. 475 (3): 3348–3368. arXiv:1707.01904. Bibcode:2018MNRAS.475.3348H. doi:10.1093/mnras/stx3200. ISSN 0035-8711.
  15. ^ Toomre, Alar (1977-01-01). "Mergers and Some Consequences". Evolution of Galaxies and Stellar Populations: 401. Bibcode:1977egsp.conf..401T.
  16. ^ Lavoie, S.; Willis, J. P.; Démoclès, J.; Eckert, D.; Gastaldello, F.; Smith, G. P.; Lidman, C.; Adami, C.; Pacaud, F.; Pierre, M.; Clerc, N.; Giles, P.; Lieu, M.; Chiappetti, L.; Altieri, B. (2016-11-01). "The XXL survey XV: evidence for dry merger driven BCG growth in XXL-100-GC X-ray clusters". Monthly Notices of the Royal Astronomical Society. 462 (4): 4141–4156. arXiv:1608.01223. Bibcode:2016MNRAS.462.4141L. doi:10.1093/mnras/stw1906. ISSN 0035-8711.
  17. ^ Barnes, Joshua E. (1988-08-01). "Encounters of Disk/Halo Galaxies". The Astrophysical Journal. 331: 699. Bibcode:1988ApJ...331..699B. doi:10.1086/166593. ISSN 0004-637X.
  18. ^ Hernquist, Lars (1993-06-01). "Structure of Merger Remnants. II. Progenitors with Rotating Bulges". The Astrophysical Journal. 409: 548. Bibcode:1993ApJ...409..548H. doi:10.1086/172686. ISSN 0004-637X.
  19. ^ Hausman, M. A.; Ostriker, J. P. (1978-09-01). "Galactic cannibalism. III. The morphological evolution of galaxies and clusters". The Astrophysical Journal. 224: 320–336. Bibcode:1978ApJ...224..320H. doi:10.1086/156380. ISSN 0004-637X.
  20. ^ Inagaki, Takahiro; Lin, Yen-Ting; Huang, Hung-Jin; Hsieh, Bau-Ching; Sugiyama, Naoshi (2015-01-01). "Stellar mass assembly of brightest cluster galaxies at late times". Monthly Notices of the Royal Astronomical Society. 446 (1): 1107–1114. arXiv:1409.4820. Bibcode:2015MNRAS.446.1107I. doi:10.1093/mnras/stu2126. ISSN 0035-8711.
  21. ^ Starr, Michelle (2022-08-27). "The Oldest Fossil Radio Galaxy Discovered Yet Has Been Found Hiding in a Cluster". ScienceAlert. Retrieved 2024-06-21.
  22. ^ a b c Gopal-Krishna; Paul, Surajit; Salunkhe, Sameer; Sonkamble, Satish (2022-07-11), "The radio source in Abell 980: A Detached-Double-Double Radio Galaxy?", Publications of the Astronomical Society of Australia, 39, arXiv:2207.05166, Bibcode:2022PASA...39...49G, doi:10.1017/pasa.2022.30
  23. ^ Jamrozy, M.; Konar, C.; Machalski, J.; Saikia, D. J. (2008-04-01). "A multifrequency study of giant radio sources - II. Spectral ageing analysis of the lobes of selected sources". Monthly Notices of the Royal Astronomical Society. 385 (3): 1286–1296. arXiv:0712.0162. Bibcode:2008MNRAS.385.1286J. doi:10.1111/j.1365-2966.2007.12772.x. ISSN 0035-8711.
  24. ^ Godfrey, L. E. H.; Morganti, R.; Brienza, M. (2017-06-20). "On the population of remnant Fanaroff–Riley type II radio galaxies and implications for radio source dynamics". Monthly Notices of the Royal Astronomical Society. 471 (1): 891–907. arXiv:1706.05909. doi:10.1093/mnras/stx1538. ISSN 0035-8711.
  25. ^ Giacintucci, Simona; Markevitch, Maxim; Cassano, Rossella; Venturi, Tiziana; Clarke, Tracy E.; Kale, Ruta; Cuciti, Virginia (2019-07-26). "Expanding the Sample of Radio Minihalos in Galaxy Clusters". The Astrophysical Journal. 880 (2): 70. arXiv:1906.07087. Bibcode:2019ApJ...880...70G. doi:10.3847/1538-4357/ab29f1. ISSN 1538-4357.
  26. ^ Murgia, M.; Parma, P.; Mack, K. -H.; de Ruiter, H. R.; Fanti, R.; Govoni, F.; Tarchi, A.; Giacintucci, S.; Markevitch, M. (2011-02-01). "Dying radio galaxies in clusters". Astronomy and Astrophysics. 526: A148. arXiv:1011.0567. Bibcode:2011A&A...526A.148M. doi:10.1051/0004-6361/201015302. ISSN 0004-6361.
  27. ^ a b Salunkhe, Sameer; Paul, Surajit; Krishna, Gopal; Sonkamble, Satish; Bhagat, Shubham (August 2022). "Deciphering the ultra-steep-spectrum diffuse radio sources discovered in the cool-core cluster Abell 980". Astronomy & Astrophysics. 664: A186. arXiv:2206.13550. Bibcode:2022A&A...664A.186S. doi:10.1051/0004-6361/202243438. ISSN 0004-6361.
  28. ^ Abell, George O.; Corwin, Harold G., Jr.; Olowin, Ronald P. (1989-05-01). "A Catalog of Rich Clusters of Galaxies". The Astrophysical Journal Supplement Series. 70: 1. Bibcode:1989ApJS...70....1A. doi:10.1086/191333. ISSN 0067-0049.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  29. ^ Abell, George O. (1958-05-01). "The Distribution of Rich Clusters of Galaxies". The Astrophysical Journal Supplement Series. 3: 211. Bibcode:1958ApJS....3..211A. doi:10.1086/190036. ISSN 0067-0049.
  30. ^ Girardi, M.; Aguerri, J. A. L.; De Grandi, S.; D'Onghia, E.; Barrena, R.; Boschin, W.; Méndez-Abreu, J.; Sánchez-Janssen, R.; Zarattini, S.; Biviano, A.; Castro-Rodriguez, N.; Corsini, E. M.; del Burgo, C.; Iglesias-Páramo, J.; Vilchez, J. M. (2014-05-01). "Fossil group origins. III. The relation between optical and X-ray luminosities". Astronomy and Astrophysics. 565: A115. arXiv:1403.0590. Bibcode:2014A&A...565A.115G. doi:10.1051/0004-6361/201323311. ISSN 0004-6361.
  31. ^ Lebedev, V. S.; Lebedeva, I. A. (1991-01-01). "Compiled list of clusters of galaxies with measured redshifts". Bulletin of the Special Astrophysics Observatory. 31: 88–125. Bibcode:1991BSAO...31...88L.
  32. ^ Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A. (2016-09-01). "Planck 2015 results. XIII. Cosmological parameters". Astronomy and Astrophysics. 594: A13. arXiv:1502.01589. Bibcode:2016A&A...594A..13P. doi:10.1051/0004-6361/201525830. ISSN 0004-6361.
  33. ^ Ebeling, H.; Voges, W.; Bohringer, H.; Edge, A. C.; Huchra, J. P.; Briel, U. G. (1996-08-01). "Properties of the X-ray-brightest Abell-type clusters of galaxies (XBACs) from ROSAT All-Sky Survey data - I. The sample". Monthly Notices of the Royal Astronomical Society. 281 (3): 799–829. arXiv:astro-ph/9602080. Bibcode:1996MNRAS.281..799E. doi:10.1093/mnras/281.3.799. ISSN 0035-8711.
  34. ^ Rudnick, Lawrence; Lemmerman, Jeffrey A. (2009-06-01). "An Objective Survey of Mpc-scale Radio Emission in 0.03 < z < 0.3 Bright X-ray Clusters". The Astrophysical Journal. 697 (2): 1341–1357. arXiv:0903.0335. Bibcode:2009ApJ...697.1341R. doi:10.1088/0004-637X/697/2/1341. ISSN 0004-637X.
  35. ^ Nezri, E.; White, R.; Combet, C.; Hinton, J. A.; Maurin, D.; Pointecouteau, E. (2012-09-01). "γ -rays from annihilating dark matter in galaxy clusters: stacking versus single source analysis". Monthly Notices of the Royal Astronomical Society. 425 (1): 477–489. arXiv:1203.1165. Bibcode:2012MNRAS.425..477N. doi:10.1111/j.1365-2966.2012.21484.x. ISSN 0035-8711.
  36. ^ Rines, Kenneth; Geller, Margaret J.; Diaferio, Antonaldo; Kurtz, Michael J. (2013-04-01). "Measuring the Ultimate Halo Mass of Galaxy Clusters: Redshifts and Mass Profiles from the Hectospec Cluster Survey (HeCS)". The Astrophysical Journal. 767 (1): 15. arXiv:1209.3786. Bibcode:2013ApJ...767...15R. doi:10.1088/0004-637X/767/1/15. ISSN 0004-637X.
  • v
  • t
  • e
Constellation of Ursa Major
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Nebulae
Galaxies
Messier
NGC
Other
Category