Tutte–Grothendieck invariant

In mathematics, a Tutte–Grothendieck (TG) invariant is a type of graph invariant that satisfies a generalized deletion–contraction formula. Any evaluation of the Tutte polynomial would be an example of a TG invariant.[1][2]

Definition

A graph function f is TG-invariant if:[2]

f ( G ) = { c | V ( G ) | if G has no edges x f ( G / e ) if  e  is a bridge y f ( G e ) if  e  is a loop a f ( G / e ) + b f ( G e ) else {\displaystyle f(G)={\begin{cases}c^{|V(G)|}&{\text{if G has no edges}}\\xf(G/e)&{\text{if }}e{\text{ is a bridge}}\\yf(G\backslash e)&{\text{if }}e{\text{ is a loop}}\\af(G/e)+bf(G\backslash e)&{\text{else}}\end{cases}}}

Above G / e denotes edge contraction whereas G \ e denotes deletion. The numbers c, x, y, a, b are parameters.

Generalization to matroids

The matroid function f is TG if:[1]

f ( M 1 M 2 ) = f ( M 1 ) f ( M 2 ) f ( M ) = a f ( M / e ) + b f ( M e )       if  e  is not coloop or bridge {\displaystyle {\begin{aligned}&f(M_{1}\oplus M_{2})=f(M_{1})f(M_{2})\\&f(M)=af(M/e)+bf(M\backslash e)\ \ \ {\text{if }}e{\text{ is not coloop or bridge}}\end{aligned}}}

It can be shown that f is given by:

f ( M ) = a | E | r ( E ) b r ( E ) T ( M ; x / a , y / b ) {\displaystyle f(M)=a^{|E|-r(E)}b^{r(E)}T(M;x/a,y/b)}

where E is the edge set of M; r is the rank function; and

T ( M ; x , y ) = A E ( M ) ( x 1 ) r ( E ) r ( A ) ( y 1 ) | A | r ( A ) {\displaystyle T(M;x,y)=\sum _{A\subset E(M)}(x-1)^{r(E)-r(A)}(y-1)^{|A|-r(A)}}

is the generalization of the Tutte polynomial to matroids.

Grothendieck group

The invariant is named after Alexander Grothendieck because of a similar construction of the Grothendieck group used in the Riemann–Roch theorem. For more details see:

  • Tutte, W. T. (2008). "A ring in graph theory". Mathematical Proceedings of the Cambridge Philosophical Society. 43 (1): 26–40. doi:10.1017/S0305004100023173. ISSN 0305-0041. MR 0018406.
  • Brylawski, T. H. (1972). "The Tutte-Grothendieck ring". Algebra Universalis. 2 (1): 375–388. doi:10.1007/BF02945050. ISSN 0002-5240. MR 0330004.

References

  1. ^ a b Welsh. Complexity, Knots, Colourings and Counting.
  2. ^ a b Goodall, Andrew (2008). "Graph polynomials and Tutte-Grothendieck invariants: an application of elementary finite Fourier analysis". arXiv:0806.4848 [math.CO].