Rumus integral lintasan

Bagian dari seri artikel mengenai
Mekanika kuantum
H ^ | ψ ( t ) = i t | ψ ( t ) {\displaystyle {\hat {H}}|\psi (t)\rangle =i\hbar {\frac {\partial }{\partial t}}|\psi (t)\rangle }
  • Pengantar
  • Glosarium
  • Sejarah
  • Buku teks
Latar belakang
  • Mekanika klasik
  • Teori kuantum lama
  • Notasi Bra–ket
  • Hamiltonian
  • Interferensi
Dasar-dasar
  • Bilangan kuantum
  • Dekoherensi
  • Fluktuasi kuantum
  • Fungsi gelombang
    • Keruntuhan fungsi gelombang
    • Dualitas gelombang-partikel
    • Gelombang materi
  • Hamiltonian
  • Interferensi
  • Keadaan dasar
  • Keadaan kuantum
  • Keterkaitan
  • Koherensi
  • Komplementaritas
  • Kuantum
  • Nonlokalitas
  • Operator
  • Pengukuran
  • Prinsip ketidakpastian
  • Qubit
  • Simetri
  • Spin
  • Superposisi
  • Teleportasi kuantum
  • Tingkat energi
Efek
Eksperimen
  • Penghapus kuantum (pilihan tertunda)
Formulasi
  • Garis besar
  • Heisenberg
  • Interaksi
  • Matriks
  • Ruang fase
  • Schrödinger
  • Sum-over-histories (path integral)
Persamaan
Interpretasi
  • Garis besar
  • Ansambel
  • Banyak-dunia
  • Bayesian
  • de Broglie–Bohm
  • Keruntuhan objektif
  • Kopenhagen
  • Logika kuantum
  • Relasional
  • Sejarah konsisten
  • Stokastik
  • Transaksional
  • Variabel tersembunyi
Topik lanjutan
Kategori
Mekanika kuantum
  • l
  • b
  • s

Rumus integral lintasan mekanika kuantum adalah deskripsi dari teori kuantum yang menggeneralisasi prinsip aksi mekanika klasik. Formula ini menggantikan gagasan klasik tunggal, lintasan unik klasik untuk sistem dengan penjumlahan atau integral fungsional, melalui ketakhinggaan kemungkinan lintasan kuantum mekanis untuk menghitung amplitudo kuantum.

Formulasi ini telah terbukti penting untuk perkembangan selanjutnya dari fisika teoretis, karena memanifestasikan kovarian Lorentz (sejumlah komponen ruang dan waktu yang memasuki persamaan dalam cara yang sama) lebih mudah untuk mencapainya daripada operator formalisme kanonik kuantisasi. Tidak seperti metode sebelumnya, lintasan-integral memungkinkan seorang fisikawan untuk dengan mudah mengubah koordinat antara deskripsi kanonik yang sangat berbeda dari sistem kuantum yang sama. Keuntungan lain yaitu bahwa dalam prakteknya lebih mudah untuk menebak bentuk Lagrangian yang benar dari sebuah teori, yang secara alami memasuki lintasan integral, dari Hamiltonian. Mungkin kelemahan dari pendekatan seperti itu bahwa unitaritas (hal ini terkait dengan konservasi dari probabilitas; probabilitas dari semua hasil fisik yang mungkin harus menambahkan satu) matriks-S secara eksplisit dalam perumusan. Pendekatan lintasan integral telah terbukti setara dengan formalisme lain mekanika kuantum dan teori ruang kuantum. Oleh karena itu, dengan menurunkan salah satu pendekatan dari sisi lain, masalah-masalah yang berhubungan dengan satu atau pendekatan lain (seperti yang dicontohkan oleh Lorentz kovarian atau unitaritas).

Lintasan integral juga berhubungan dengan kuantum dan proses stokastik, dan ini memberikan dasar untuk grand sintesis dari tahun 1970-an yang memadukan bidang teori kuantum dengan statistik teori lapangan yang berfluktuasi lapangan dekat orde kedua fase transisi. Dalam persamaan Schrödinger adalah persamaan difusi dengan imajiner difusi konstan, dan lintasan integral merupakan analisis lanjutan dari metode untuk menyimpulkan semua kemungkinan acak berjalan.

Hanya tiga dari keseluruhan jalur yang berkontribusi terhadap amplitudo kuantum untuk sebuah partikel bergerak dari titik A pada waktu t0t0 ke titik B di lain waktu t1t1.

Referensi

Bacaan lanjutan

  • Feynman, R. P.; Hibbs, A. R. (1965). Quantum Mechanics and Path Integrals. New York: McGraw-Hill. ISBN 0-07-020650-3.  The historical reference, written by the inventor of the path integral formulation himself and one of his students.
  • Kleinert, Hagen (2004). Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (edisi ke-4th). Singapore: World Scientific. ISBN 981-238-107-4. 
  • Zinn Justin, Jean (2004). Path Integrals in Quantum Mechanics. Oxford University Press. ISBN 0-19-856674-3. 
  • Schulman, Larry S. (1981). Techniques & Applications of Path Integration. New York: John Wiley & Sons. ISBN 0-486-44528-3. 
  • Ahmad, Ishfaq (1971). Mathematical Integrals in Quantum Nature. The Nucleus. hlm. 189–209. 
  • Inomata, Akira; Kuratsuji, Hiroshi; Gerry, Christopher (1992). Path Integrals and Coherent States of SU(2) and SU(1,1). Singapore: World Scientific. ISBN 981-02-0656-9. 
  • Grosche, Christian & Steiner, Frank (1998). Handbook of Feynman Path Integrals. Springer Tracts in Modern Physics 145. Springer-Verlag. ISBN 3-540-57135-3. 
  • Tomé, Wolfgang A. (1998). Path Integrals on Group Manifolds. Singapore: World Scientific. ISBN 981-02-3355-8.  Discusses the definition of Path Integrals for systems whose kinematical variables are the generators of a real separable, connected Lie group with irreducible, square integrable representations.
  • Klauder, John R. (2010). A Modern Approach to Functional Integration. New York: Birkhäuser. ISBN 978-0-8176-4790-2. 
  • Ryder, Lewis H. (1985). Quantum Field Theory. Cambridge University Press. ISBN 0-521-33859-X.  Highly readable textbook; introduction to relativistic QFT for particle physics.
  • Rivers, R. J. (1987). Path Integrals Methods in Quantum Field Theory. Cambridge University Press. ISBN 0-521-25979-7. 
  • Mazzucchi, S. (2009). Mathematical Feynman path integrals and their applications. World Scientific. ISBN 978-981-283-690-8. 
  • Albeverio, S.; Hoegh-Krohn. R. & Mazzucchi, S. (2008). Mathematical Theory of Feynman Path Integral. Lecture Notes in Mathematics 523. Springer-Verlag. ISBN 9783540769569. 
  • Glimm, James & Jaffe, Arthur (1981). Quantum Physics: A Functional Integral Point of View. New York: Springer-Verlag. ISBN 0-387-90562-6. 
  • Simon, Barry (1979). Functional Integration and Quantum Phyiscs. New York: Academic Press. ISBN 0-8218-6941-8. 
  • Johnson, Gerald W.; Lapidus, Michel L. (2002). The Feynman Integral and Feynman's Operational Calculus. Oxford Mathematical Monographs. Oxford University Press. ISBN 0-19-851572-3. 
  • Müller-Kirsten, Harald J. W. (2012). Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral (edisi ke-2nd). Singapore: World Scientific. 
  • Etingof, Pavel (2002). "Geometry and Quantum Field Theory". MIT OpenCourseWare.  This course, designed for mathematicians, is a rigorous introduction to perturbative quantum field theory, using the language of functional integrals.
  • Zee, Anthony (2010). Quantum Field Theory in a Nutshell (edisi ke-Second). Princeton University Press. ISBN 978-0-691-14034-6.  A great introduction to Path Integrals (Chapter 1) and QFT in general.
  • Grosche, Christian (1992). "An Introduction into the Feynman Path Integral". arΧiv:hep-th/9302097. 
  • MacKenzie, Richard (2000). "Path Integral Methods and Applications". arΧiv:quant-ph/0004090. 
  • DeWitt-Morette, Cécile (1972). "Feynman's path integral: Definition without limiting procedure". Communication in Mathematical Physics. 28 (1): 47–67. Bibcode:1972CMaPh..28...47D. doi:10.1007/BF02099371. MR 0309456. 
  • Cartier, Pierre; DeWitt-Morette, Cécile (1995). "A new perspective on Functional Integration". Journal of Mathematical Physics. 36 (5): 2137–2340. arXiv:funct-an/9602005 alt=Dapat diakses gratis. Bibcode:1995JMP....36.2237C. doi:10.1063/1.531039. 

Pranala luar

  • Path integral on Scholarpedia
  • Path Integrals in Quantum Theories: A Pedagogic 1st Step
  • A mathematically rigorous approach to perturbative path integrals via animation on YouTube