モーデルの定理

数学におけるモーデルの定理(モーデルのていり、: Mordell's theorem)とは、有理数体 Q 上の楕円曲線 E有理点無限遠点 O のなすアーベル群 E(Q) が有限生成になる、という定理である。有限生成アーベル群の基本定理から有限生成アーベル群は次に同型であることが知られている。

Z r T ( r 0 ) {\displaystyle \mathbb {Z} ^{\oplus r}\oplus T\qquad (r\geq 0)}

ここで T {\displaystyle T} は有限アーベル群(ねじれ部分群)である。(rE階数(ランク)と呼ばれ、関連する予想にミレニアム懸賞問題BSD予想がある。)

有限生成アーベル群 E(Q) の場合、ねじれ部分群 T は次のいずれかに同型となる(メイザーのねじれ定理)。

(i) Z / n Z ( 1 n 10  or  n = 12 ) {\displaystyle {\text{(i)}}\;\mathbb {Z} /n\mathbb {Z} \qquad (1\leq n\leq 10\,{\text{ or }}\,n=12)}
(ii) Z / n Z Z / 2 Z ( n = 2 , 4 , 6 , 8 ) {\displaystyle {\text{(ii)}}\;\mathbb {Z} /n\mathbb {Z} \;\oplus \;\mathbb {Z} /2\mathbb {Z} \qquad (n=2,4,6,8)}

モーデルの定理は後にアンドレ・ヴェイユによって代数体上のアーベル多様体の有理点のなす群に関するモーデル・ヴェイユの定理へと拡張された[1]

概要

以下モーデルの定理を正確に述べるために少し準備をする。

モーデルの弱定理 (weak Mordell theorem)

これは E(Q)/2E(Q) が有限群であるという定理である。一般にアーベル群 A が有限生成ならば A/2A は有限群になるので、これは E(Q) が有限生成となるための必要条件になっている。ここで、一般には A/2A が有限群でも A が有限生成になるとは限らないことに注意しなければならない(反例として、Q/2Q = {0} だが Q は有限生成でないことがあげられる)。

有理点の高さ

有理数 x について高さ H(x) を次のように定義する。x = m/n (n, mZ で、nm は互いに素)と既約分数で表示したとき

H ( x ) = max { | n | , | m | } {\displaystyle H(x)=\max\{\left|n\right|,\left|m\right|\}}

また PE(Q), PO に対して H(P) を P 座標の高さとし、H(O) = 1 と定義する。

このとき次の2つの条件を満たす正数 C が存在することが知られている。

(1) E(Q) に属するすべての P に対して C H ( 2 P ) H ( P ) 4 {\displaystyle C\cdot H(2P)\geq H(P)^{4}}
(2) E(Q) に属するすべての P, Q に対して C H ( P ) H ( Q ) m i n { H ( P + Q ) , H ( P Q ) } {\displaystyle C\cdot H(P)\cdot H(Q)\geq min\{H(P+Q),H(P-Q)\}}

いま fE(Q) から E(Q)/2E(Q) の上への自然な準同型

f : E ( Q ) E ( Q ) / 2 E ( Q ) {\displaystyle f\colon E(\mathbb {Q} )\to E(\mathbb {Q} )/2E(\mathbb {Q} )}  

とし E(Q) の部分集合 Af による像が E(Q)/2E(Q) であるとする。(すなわち f: AE(Q)/2E(Q) が全射。いま A に演算は定義しない。)

このときモーデルの弱定理より A有限集合でも構わないことがわかる。そこで A = { Q 1 , Q 2 , , Q n } {\displaystyle A=\{Q_{1},Q_{2},\cdot \cdot \cdot ,Q_{n}\}} とする。ここで正数 M

M = max { C , H ( Q 1 ) , H ( Q 2 ) , , H ( Q n ) } {\displaystyle M=\max\{C,H(Q_{1}),H(Q_{2}),\cdot \cdot \cdot ,H(Q_{n})\}}

と定めると次のモーデルの定理が成り立つ

E(Q) は {PE(Q), H(P) ≦ M} によって生成される。

高さの定義よりこれは有限集合でなので、結局 E(Q) は有限生成であることが分かる。

モーデル・ヴェイユの定理

モーデル・ヴェイユの定理(Mordell–Weil theorem)は、数体 K の上のアーベル多様体 A に対し、A の K-有理点の群 A(K) が、モーデル・ヴェイユ群(Mordell-Weil group)と呼ばれる有限生成アーベル群であるという定理である。A が楕円曲線で K が有理数体 Q の場合をモーデルの定理と言い、1908年頃にアンリ・ポアンカレ(Henri Poincaré)により提示された疑問に答えたもので、1922年にルイス・モーデル(Louis Mordell)により証明された。

接する弦のプロセス(tangent-chord process)(三次曲線(cubic cuve)における加法定理の一種)は、17世紀より知られている。フェルマー(Fermat)のは無限降下法は良く知られていたが、モーデルは(無限降下法の)証明の重要な段階である商群 E(Q)/2E(Q) を証明することに成功した。確かにこの群の有限性は、E(Q) が有限生成であることの必要条件であり、このことはアーベル群のランクが有限であることを意味していて、本質的に難しいことであることが判明している。このことの証明は、E の点の二重性の直接の解析により初めて可能となる。

数年後、アンドレ・ヴェイユ(André Weil)はこの問題を取り上げ、数体上の高い種数を持つ曲線のヤコビ多様体へ一般化し、1928年に彼の博士論文として出版した[2]。一層抽象的な方法が要求され、同一の構造を持つ証明が遂行された。証明の後半は、A(K) の点の「サイズ」の限界を意味するある種類の高さ函数を必要とした。座標の測り方として、高さは対数的であり、従って大まかに言うと、同次座標(英語版)(homogeneous coordinates)の集合を書き下すことに何デジット必要かという疑問であった。アーベル多様体では、射影多様体として表現されていることから、何の前提も必要ない。

証明の前半も後半も、その後のテクニックの前進により大きく改善され、ガロアコホモロジーでは降下法が適用され、最良の高さ函数は、二次形式であることが研究により示されている。

今後の課題

未だに解決されていない問題はいくつかある。

脚注

  1. ^ Mordell (1922)
  2. ^ Weil, André (1928). L'arithmétique sur les courbes algébriques (PhD). Almqvist & Wiksells Boktryckeri AB, Uppsala.

関連項目

参考文献

  • 加藤, 和也、黒川, 信重、斎藤, 毅『数論I――Fermatの夢と類体論』岩波書店、2005年。ISBN 4-00-005527-5。 
  • A. Weil, L'arithmétique sur les courbes algébriques, Acta Math 52, (1929) pp. 281–315, reprinted in vol 1 of his collected papers ISBN 0-387-90330-5
  • L.J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth degrees, Proc Cam. Phil. Soc. 21, (1922) p. 179.
  • J. H. Silverman, The arithmetic of elliptic curves, ISBN 0-387-96203-4 second edition